Quantum bits

Quantum computing
G. Chênevert

Jan. 8, 2021

Quantum bits

Quantum systems

Dirac formalism

Quantum bits

Recall: Wave function

A quantum system can be described by a (complex-valued) wave function $\Psi(\mathbf{x}, t)$ satisfying Schrödinger's equation:

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \psi+V \psi
$$

where

- $\Delta=\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}$ is the Laplacian operator,
- $V(\mathbf{x}, t)$ the potential function representing the environment.

Stationary states

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \Psi+V \Psi
$$

Let's assume that the potential $V=V(\mathbf{x})$ is independent of t and look for separable solutions of the form

$$
\Psi(\mathbf{x}, t)=\chi(t) \phi(\mathbf{x})
$$

The equation becomes: $\quad i \hbar \frac{\partial \chi}{\partial t} \phi=\chi\left(-\frac{\hbar^{2}}{2 m} \Delta \phi+V \phi\right)$
or

$$
\frac{i \hbar}{\chi} \frac{\partial \chi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\Delta \phi}{\phi}+V
$$

Separable solutions

$$
\frac{i \hbar}{\chi} \frac{\partial \chi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\Delta \phi}{\phi}+V=\mathrm{constant}=: E
$$

reduces to

$$
\begin{gathered}
\left\{\begin{array}{c}
\frac{\partial \chi}{\partial t}=-\frac{i E}{\hbar} \chi \\
-\frac{\hbar^{2}}{2 m} \Delta \phi+V \phi=E \phi
\end{array}\right. \\
\Longrightarrow\left\{\begin{array}{r}
\chi(t)=A e^{-\frac{i E}{\hbar} t} \quad \text { and } \\
\widehat{H} \phi=E \phi \quad \text { where } \quad \widehat{H}=-\frac{\hbar^{2}}{2 m} \Delta+V
\end{array}\right.
\end{gathered}
$$

Quantization

Given boundary conditions on $\phi(\mathbf{x})$, the reduced Hamiltonian operator \widehat{H} only has countably many (real) eigenvalues:

$$
E_{0} \leq E_{1} \leq E_{2} \leq \cdots \leq E_{n} \leq \cdots,
$$

corresponding to countably many eigenfunctions:

$$
\phi_{0}, \quad \phi_{1}, \quad \phi_{2}, \quad \ldots \quad \phi_{n}, \quad \ldots
$$

hence we get countably many separable solutions

$$
\Psi_{n}(\mathbf{x}, t)=A_{n} e^{-\frac{i E_{n}}{\hbar} t} \phi_{n}(\mathbf{x})
$$

Quantum states

In general, the state of a quantum system can be written as a linear combination

$$
\Psi(\mathbf{x}, t)=\sum_{n} A_{n} e^{-i \frac{E_{n}}{\hbar} t} \phi_{n}(\mathbf{x})
$$

where the ϕ_{n} are eigenfunctions for the reduced Hamiltonian operator:

$$
\widehat{H} \phi_{n}=E_{n} \phi_{n}
$$

These eigenstates are orthogonal with respect to the Hermitian product

$$
\langle\phi \mid \psi\rangle=\int \phi(\mathbf{x})^{*} \psi(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

Quantum bits

Quantum systems

Dirac formalism

Quantum bits

Braket notation

The instantaneous states $\phi(\mathbf{x})=\Psi\left(\mathbf{x}, t_{0}\right)$ form a vector space \mathcal{V} spanned by the ϕ_{n} :

$$
\phi(\mathbf{x})=\sum_{n} \alpha_{n} \phi_{n}(\mathbf{x}) \quad \text { with } \quad \alpha_{n} \in \mathbb{C} .
$$

Hermitian product: if the ϕ_{n} are normalized $\left(\left\|\phi_{n}\right\|=\sqrt{\left\langle\phi_{n} \mid \phi_{n}\right\rangle}=1\right)$ then for

$$
\phi=\sum_{n} \alpha_{n} \phi_{n}, \quad \psi=\sum_{n} \beta_{n} \phi_{n},
$$

we have

$$
\langle\phi \mid \psi\rangle=\sum_{n} \alpha_{n}^{*} \beta_{n}=\left[\begin{array}{lll}
\alpha_{0} & \alpha_{1} & \ldots
\end{array}\right]^{*}\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots
\end{array}\right]=|\phi\rangle^{\dagger}|\psi\rangle
$$

Measurement

When we measure a mixed state

$$
|\phi\rangle=\sum_{n} \alpha_{n}\left|\phi_{n}\right\rangle \in \mathcal{V} \backslash\{\mathbf{0}\}:
$$

it gets projected on the pure state $\left|\phi_{n}\right\rangle$ with energy E_{n} with probability

$$
\mathbb{P}\left[\mathcal{M}|\phi\rangle=\left|\phi_{n}\right\rangle\right]=\frac{\left|\left\langle\phi \mid \phi_{n}\right\rangle\right|^{2}}{\|\phi\|^{2}}=\frac{\left|\alpha_{n}\right|^{2}}{\|\phi\|^{2}}
$$

If $|\phi\rangle$ is normalized, this is just

$$
\mathbb{P}\left[\mathcal{M}|\phi\rangle=\left|\phi_{n}\right\rangle\right]=\left|\left\langle\phi \mid \phi_{n}\right\rangle\right|^{2}=\left|\alpha_{n}\right|^{2}
$$

Exercise

We measure the mixed quantum state

$$
|\phi\rangle=\left|\phi_{0}\right\rangle+(3+4 i)\left|\phi_{1}\right\rangle+7\left|\phi_{2}\right\rangle+5 i\left|\phi_{3}\right\rangle .
$$

What to we expect to see ?

Answer:

$$
\mathbb{P}\left[\mathcal{M}|\phi\rangle=\left|\phi_{n}\right\rangle\right]=\left\{\begin{array}{rl}
1 \% & n=0 \\
25 \% & n=1 \\
49 \% & n=2 \\
25 \% & n=3
\end{array}\right.
$$

Equivalence

When two states are proportional: $|\phi\rangle=\alpha|\psi\rangle(\alpha \neq 0)$ then

$$
\mathbb{P}\left[\mathcal{M}|\phi\rangle=\left|\phi_{n}\right\rangle\right]=\frac{\left|\left\langle\phi \mid \phi_{n}\right\rangle\right|^{2}}{\|\phi\|^{2}}=\frac{|\alpha|^{2}\left|\left\langle\psi \mid \phi_{n}\right\rangle\right|^{2}}{|\alpha|^{2}\|\psi\|^{2}}=\mathbb{P}\left[\mathcal{M}|\psi\rangle=\left|\phi_{n}\right\rangle\right]
$$

Thus $|\phi\rangle$ and $|\psi\rangle$ cannot be distinguished by measurements: we write $|\phi\rangle \sim|\psi\rangle$.
Quantum states should really be thought of as equivalence classes of vectors

$$
\{\alpha|\phi\rangle \mid \alpha \neq 0\}
$$

i.e. lines in \mathcal{V} : elements of what the mathematicians call the projective space $\mathbb{P}^{1}(\mathcal{V})$.

Equivalence and normalization

Remark: clearly any quantum state is equivalent to a normalized state

$$
|\phi\rangle \sim \frac{1}{\|\phi\|}|\phi\rangle
$$

but such a normalized state is not unique:

$$
|\phi\rangle \sim \alpha|\phi\rangle
$$

another state with the same norm, whenever $|\alpha|=1$, i.e. $\alpha=e^{i a} \quad(a \in \mathbb{R})$

Quantum bits

Quantum systems

Dirac formalism

Quantum bits

Computational quantum systems

N-level quantum system: when $\operatorname{dim}_{\mathbb{C}} \mathcal{V}=N$.
Basis of pure (eigen) states $\left|\phi_{0}\right\rangle,\left|\phi_{1}\right\rangle, \ldots,\left|\phi_{N-1}\right\rangle$.
Computational basis : to simplify notation let us write

$$
|n\rangle:=\left|\phi_{n}\right\rangle \quad(0 \leq n<N)
$$

and \mathcal{V}_{N} for the standard N-level state space with pure states

$$
|0\rangle,|1\rangle, \ldots,|N-1\rangle
$$

$N=1$ case: $|\phi\rangle=\alpha|0\rangle \sim|0\rangle \quad$ "constant system" that behaves classically

$N=2$: Quantum bits (or qubits)

The state of a qubit can be thought of as a nonzero linear combination

$$
|\phi\rangle=\alpha|0\rangle+\beta|1\rangle \quad \alpha, \beta \in \mathbb{C} .
$$

When we measure it:

$$
\mathbb{P}[\mathcal{M}|\phi\rangle=|0\rangle]=\frac{|\alpha|^{2}}{|\alpha|^{2}+|\beta|^{2}}, \quad \mathbb{P}[\mathcal{M}|\phi\rangle=|1\rangle]=\frac{|\beta|^{2}}{|\alpha|^{2}+|\beta|^{2}}
$$

For a normalized state, $|\alpha|^{2}+|\beta|^{2}=1$ so this is just

$$
\mathbb{P}[\mathcal{M}|\phi\rangle=|0\rangle]=|\alpha|^{2}, \quad \mathbb{P}[\mathcal{M}|\phi\rangle=|1\rangle]=|\beta|^{2} .
$$

Example

$$
\begin{gathered}
|\phi\rangle=|0\rangle+|1\rangle \quad \sim \frac{|0\rangle+|1\rangle}{\sqrt{2}} \\
\mathbb{P}[\mathcal{M}|\phi\rangle=|0\rangle]=\mathbb{P}[\mathcal{M}|\phi\rangle=|1\rangle]=\frac{1}{2}
\end{gathered}
$$

Measurement Probabilities

IBM Q Experience results

Result of 1024 simulations:

Result of 1024 executions on ibmqx2:

Your turn

Now would be a good time to create an account and start messing around with the

IBM Q Experience

https://quantum-computing.ibm.com/

Suggestion:

$$
\underset{+}{\mathrm{q}_{\odot}} \mathrm{H} \quad \text { yields } \quad|\phi\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}
$$

