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Quantum bits

Quantum systems



Recall: Wave function

A quantum system can be described by a (complex-valued) wave function V(x, t)

satisfying Schrodinger’s equation:
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where

82
o A= Z ] is the Laplacian operator,
N 1

e V(x,t) the potential function representing the environment.



Stationary states
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Let's assume that the potential V = V/(x) is independent of t and look for separable
solutions of the form

V(x, t) = x(t) ¢(x).
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Separable solutions
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Quantization

Given boundary conditions on ¢(x), the reduced Hamiltonian operator H only has
countably many (real) eigenvalues:

Ecb<E<E<---<E,<--,

corresponding to countably many eigenfunctions:
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hence we get countably many separable solutions

Wo(x, 1) = Ape 1t gn(x).



Quantum states

In general, the state of a quantum system can be written as a linear combination

En

V(x,t) =Y Are " gn(x)
n
where the ¢, are eigenfunctions for the reduced Hamiltonian operator:

H\¢n: n¢n‘

These eigenstates are orthogonal with respect to the Hermitian product

(6] ) = / H(x)" (x) dx
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Braket notation

The instantaneous states ¢(x) = W(x, tg) form a vector space V spanned by the ¢p:
— Za" ®n(x) with o, € C.
n

Hermitian product: if the ¢, are normalized (|¢,| = \/(én|¢n) = 1) then for

¢:Zan¢na /l/]:Zanqsn?

we have
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Measurement

When we measure a mixed state
|¢> = Zan’¢n> € V\{O} :

it gets projected on the pure state |¢,) with energy E, with probability

2 an 2
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If |¢) is normalized, this is just

P[M¢) = |dn) | = (& ] dn)]* = |oval*.



Exercise

We measure the mixed quantum state
|9) = |do) + (3+4i)[¢1) + 7|d2) + 5i[¢3).
What to we expect to see ?

Answer:

1% n=0
25% n=1
]P)M - n —
(M) =lon] =40 "
25% n=3



Equivalence

When two states are proportional: |¢) = «|) (a # 0) then

2 az n2
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=P[M¢) = |n) ]

Thus |¢) and [¢) cannot be distinguished by measurements: we write |¢) ~ [1).

Quantum states should really be thought of as equivalence classes of vectors
{alg) | a#0}

i.e. lines in V: elements of what the mathematicians call the projective space P!(V).



Equivalence and normalization

Remark: clearly any quantum state is equivalent to a normalized state

1
[¢) ~ 1)
Tl
but such a normalized state is not unique:
9) ~ alg),

another state with the same norm, whenever |a| =1, i.e. a = e? (a € R)
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Computational quantum systems

N-level quantum system: when dim¢ V = N.
Basis of pure (eigen) states |¢g), |#1), ..., |dn—1)-
Computational basis : to simplify notation let us write

n) =g (0<n<N)
and Vy for the standard N-level state space with pure states

10), [1), ..., [N —1).

N =1 case: |¢) = «|0) ~|0) "constant system” that behaves classically



N =2 : Quantum bits (or qubits)

The state of a qubit can be thought of as a nonzero linear combination

lp) = a]0) +B]1)  «a,B€C.

When we measure it:

P M|¢) = 0) ] _ P P[M|¢) = [1)] _ 1P
N e+ (817 N T a2+ |8

For a normalized state, |a|? 4 |3|?> = 1 so this is just

P[M|o) =10)] =al®,  P[M]g)=1)] =I5



Example

#) = 10) +[1)

P[M]¢)

Statevector v

Measur

probability (%)

0) +[1)

V2

0)] = B[ M) = [1)] =

ement Probabilities




IBM Q Experience results

Result of 1024 simulations:

52.832%

Result of 1024 executions on ibmgx2:

Histogram




Your turn

Now would be a good time to create an account and start messing around with the

IBM Q Experience

https://quantum-computing.ibm.com/

Suggestion:

- jots 9= 10410
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